


The ‘Original’ DeepFake Method

https://github.com/deepfakes/faceswap (github account name)

https://github.com/deepfakes/faceswap


Face Swap vs Reenactment



Graphics vs Deep Learning

3D Model + Textures + Shading -> Synthetic Image

Star Wars Rogue One

Discriminator loss

Generator loss

[Karras et al. 18]

Generative Adversarial Networks



Graphics-based Facial Editing



Fitting Parametric Model to RGB Image

CVPR’16 (Oral) [Thies et al.]: Face2Face

𝐸 𝑃 =



Fitting Parametric Model to RGB Image

CVPR’16 (Oral) [Thies et al.]: Face2Face



3D Model + Image-based Rendering

Input Output

G
eo

m
et

ry
A

lb
ed

o
Te

xt
u

re
Siggraph Asia’15 [Thies et al.]: Facial Reenactment



Facial Expression Transfer

Siggraph Asia’15 [Thies et al.]: Facial Reenactment



Face2Face

CVPR’16 (Oral) [Thies et al.]: Face2Face



HeadOn: Reenactment of Portrait Videos

Siggraph’18 [Thies et al.]: HeadOn



HeadOn: Reenactment of Portrait Videos

Siggraph’18 [Thies et al.]: HeadOn



DeepLearning-based Facial Editing



Generative Neural Networks

Over-parameterized models
-> can re-create input



Generative Neural Networks

Over-parameterized models
-> can re-create input

Discriminator loss

Generator loss

GANs [Goodfellow et al. 14], Pix2Pix [Isola et al. 17], ProGAN [Karras et al. 18], …

[Karras et al. 18]



Generative Neural Networks

Over-parameterized models
-> can re-create input

No explicit no control
-> struggle with videos Discriminator loss

Generator loss

GANs [Goodfellow et al. 14], Pix2Pix [Isola et al. 17], ProGAN [Karras et al. 18], …

[Karras et al. 18]



Progressive Growing GANs

https://github.com/tkarras/progressive_growing_of_gans [Karras et al. 17]

https://github.com/tkarras/progressive_growing_of_gans


StyleGAN

[Karras et al. 19] StyleGAN
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StyleGAN

[Karras et al. 19] StyleGANhttps://youtu.be/kSLJriaOumA

https://youtu.be/kSLJriaOumA


StyleGAN

https://youtu.be/kSLJriaOumA [Karras et al. 19] StyleGAN

https://youtu.be/kSLJriaOumA


Conditional GANs

Siggraph’18 [Kim et al.]: Deep Video Portraits



Conditional GANs

Siggraph’18 [Kim et al.]: Deep Video Portraits



Conditioning on Face Reconstruction

Neural Network converts synthetic data to realistic video

Siggraph’18 [Kim et al.]: Deep Video Portraits



Conditioning on Face Reconstruction

Siggraph’18 [Kim et al.]: Deep Video Portraits



Conditioning on Face Reconstruction

Siggraph’18 [Kim et al.]: Deep Video Portraits



Video Editing

Siggraph’18 [Kim et al.]: Deep Video Portraits



Videos still challenging for cGANs…



DeepVoxels: Explicit 3D Features

CVPR’19 (Oral) [Sitzmann et al.]: DeepVoxels



UV-Map

Renderer Output Image

Sampled Texture

Neural Textures: Features on 3D Mesh

Siggraph’19 [Thies et al.]: Neural Textures

3D Geometry

Rendering

3D        2D

View R, t

Neural Texture



Facial Animation

Siggraph’19 [Thies et al.]: Neural Textures



Facial Animation

Siggraph’19 [Thies et al.]: Neural Textures



Facial Animation

Siggraph’19 [Thies et al.]: Neural Textures



Dynamic Neural Radiance Fields for 4D Avatars

Dynamic Neural Radiance 
Field

Monocular Input 
Sequence

CVPR’21 [Gafni et al.]: Dynamic Neural Radiance Fields



Dynamic Neural Radiance Fields for 4D Avatars

Dynamic Neural Radiance 
Field

Monocular Input 
Sequence

Novel Poses

Novel Expressions

CVPR’21 [Gafni et al.]: Dynamic Neural Radiance Fields



Dynamic Neural Radiance Fields for 4D Avatars

Dynamic Neural Radiance 
Field

Monocular Input 
Sequence

Novel Poses

4D Facial Avatar

Novel Expressions

CVPR’21 [Gafni et al.]: Dynamic Neural Radiance Fields



Dynamic Neural Radiance Fields for 4D Avatars

Dynamic Neural Radiance 
Field

Monocular Input 
Sequence

Novel Poses

Novel Expressions

Source Animated
4D Avatar

CVPR’21 [Gafni et al.]: Dynamic Neural Radiance Fields



Dynamic Neural Radiance Fields for 4D Avatars

Dynamic Neural Radiance 
Field

Monocular Input 
Sequence

Novel Poses

Novel Expressions

Source Animated
4D Avatar

CVPR’21 [Gafni et al.]: Dynamic Neural Radiance Fields



What about Deep Fake Detection?



FaceForensics

ICCV’19 [Roessler et al.]: FaceForensics



FaceForensics: Dataset

Source: 1,000 Videos (510,529 frames)

- Publicly available!

- Over 2 million 
manipulated frames

- Three compression levels
for each manipulated frame

- Over 1000 research groups

ICCV’19 [Roessler et al.]: FaceForensics



FaceForensics: Benchmark

On 700 high-quality images    +    hidden test set    +    automated evaluation

ICCV’19 [Roessler et al.]: FaceForensics



Unsupervised / Self-Supervised Forensics

Major challenges

- Self-supervised Learning

- Transfer Learning

- Unsupervised Learning

[Cozzolino et al. 20]: ForensicTransfer



Forensic Transfer: Few Shot Learning

Pro.GAN vs CycleGAN

[Cozzolino et al. 20]: ForensicTransfer



ID-Reveal 

• It is trained only on real videos (Voxceleb, more than 5000 identities)

• It captures the biometrics of a specific identity 

• Is this the identity of that specific subject?

Reference set of videos of real 
faces for a specific subject (actor A)

Distance 
computation

Is this actor A?

Video under 
test

[Cozzolino et al. 20]: ID-Reveal



Proposed Approach

• Spatio-temporal feature extraction + adversarial training

Video under test

3DMM

Temporal ID Net

Reference Videos
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[Cozzolino et al. 20]: ID-Reveal



Training set

Embedding Space

Id. A

Id. B

Facial Features

Id. C

Id. D

Metric Learning

• For each face we extract features (shape, expression, pose) obtained 
using the 3D morphable model 

• The network is trained so as that the embedded vectors of the same 
subject are close but far from those of different subjects



Generated
Features

Training set

Embedding Space

Id. A

Id. B

Facial Features

Id. C

Id. D

Adversarial Training 

• We use a generative network to produce features similar to those we 
may extract from a manipulated video

• The objective of the adversarial game is to increase the ability of the 
network to distinguish real identities from fake ones
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Detection Results
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Detection Results
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Some Work in Progress



Active Defense against Generative Models?



Conclusion

Synthesis DetectionSynergy
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