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Deep Learning: Bad Story
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Perils of Stationary Assumption 
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Could Attackers Systematically Find these Inputs?

7
Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. ICLR’ 14
Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. ICLR’ 15
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[Photo credit: Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy. EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES]



Threat Model
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!! has been used as threat model of adversarial examples
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[Photo credit: Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy. EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES]



Adversarial Machine Learning 

New Threat Model

9



Threat Model

[Photo credit: nicholas.carlini]

Number of Papers related to Adversarial Example in different years
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Limitation

Lighting Pixel Shift
LP is not a good metric to evaluate the “look like” 
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Lp ?



A New Threat Model

Adversarial examples should be the inputs which could be correctly 
recognized by humans but mislead machine learning models

# = %*+, &; (, * + ,%-./0.-12*3 (&; ()
Mislead machine learning model Correctly recognized by humans
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New Adversarial Examples 

Original Flow New

13Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, Dawn Song. Spatially transformed adversarial examples. ICLR’ 18.



Spatially Transformed Adversarial Examples
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Adversarial & Perceptual Loss

• Adversarial Loss #DEF1

max max/01 &(!%&')' − & !%&' (, −+

• Change the predicted results
correct label

target label (2)

Attack

• Perceptual Loss !!"#$"!%&'(
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1Carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." IEEE S&P’ 17.
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Spatial Transformed Adversarial Examples

Adversarial examples generated by stAdv on MNIST. 
The ground truth are shown in the diagonal.

,=
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Target label: 0



Adversarial Machine Learning 
Threat Model

Attack in 3D space
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Adversarial Examples in the Physical World
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Autonomous Vehicle (AV) Architecture
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AV Perception
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Could we generate an adversarial object to mislead the real-world LiDAR system? 



Adversarial Attacks: Physical Domain
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Adversarial Attacks: Physical Domain

• Physically Possible Adversarial Examples

Athalye et al. Evtimov et al. Kurakin et al.



Physical Domain: Shape and Texture

• Starting from textureless objects
• Rich geometric features but minimal texture 

variation 

Shapes from PASCAL3D+ by Xiang et al.



Our Attacking Pipeline

• Input: a 3D mesh + shape/texture perturbations
• Render: a differentiable renderer
• Target: fool a machine learning model and keep the shape plausible

Xiao, Chaowei, Yang, Dawei et al. "Meshadv: Adversarial meshes for visual recognition." CVPR. 2019.



Adversarial Target & Loss

• Classification: cross entropy
• Change the prediction label

• Detection: the disappearance 
attack loss (Eykholt et al.)
• Remove the targeted detection

correct label
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Perceptual Loss

• 3D Laplacian loss, operated on vertex displacements
• Neighboring vertices should be perturbed along similar directions

Perturbation of neighboring vertices
Perturbation differences 3D Laplacian Loss



Experiments: Classification

Perturb. Type Model Test Accuracy Best Case Average Case Worst Case

Shape
DenseNet 100.0% 100.0% 100.0% 100.0%

Inception-v3 100.0% 100.0% 99.8% 98.6%

Texture
DenseNet 100.0% 100.0% 99.8% 98.6%

Inception-v3 100.0% 100.0% 100.0% 100.0%



Transfer to the Black-box Renderer

• Airplane + Mitsuba renderer + Skylight



Transfer to the Black-box Renderer

Before Attack
Neural Mesh Renderer

After Attack
Neural Mesh Renderer

After Attack
Mitsuba Renderer

Before Attack
Mitsuba Renderer

Search lighting and poses White-box attack Black-box transfer



AV Perception
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Could we generate an adversarial object to mislead the real-world LiDAR system? 
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What Should We Manipulate? 

illumination

shape

texture

32Chaowei Xiao*, Yulong Cao*, Dawei Yang*, Jin Fang, Ruigang Yang, Mingyan Liu, Bo Li. Adversarial objects against lidar-based autonomous driving systems. CVPR-AMLCV’ 19



Generating Adversarial Objects
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Chaowei Xiao*, Yulong Cao*, Dawei Yang*, Jin Fang, Ruigang Yang, Mingyan Liu, Bo Li. Adversarial objects against lidar-based autonomous driving systems. CVPR-AMLCV 2019



Adversarial Loss
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Generate Printable Shape

• 3D distance loss, operated on vertex displacements

Perturbation of neighboring vertices Perturbation differences
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Pipeline of LiDAR-adv
• Input: a 3D mesh + shape perturbations
• Target: fool a machine learning model and keep the shape printable
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Pipeline of LiDAR-adv
• Input: a 3D mesh + shape perturbations

• Non-differentiable Pre/Post Processing
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Pipeline of LiDAR-adv
• Input: a 3D mesh + shape perturbations

• Non-differentiable pre/post processing: differentiable proxy function

• Lidar
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Pipeline of LiDAR-adv
• Input: a 3D mesh + shape perturbations

• LiDAR: a differentiable renderer

• Non-differentiable Pre/Post Processing: Differentiable proxy function

• Target: fool a machine learning model and keep the shape printable
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Benign object Point cloudLiDAR AV perception

Adversarial object Adversarial point cloudLiDAR AV perception
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Physical Experiments
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Adversarial object Scene Autonomous vehicle



Physical Experiments
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Sensor Fusion

Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, et al. . Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion based Perception in Autonomous Driving Under Physical-World Attacks. S&P, 21
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LiDAR Spoofing Attack

44Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Rampazzi, Qi Alfred Chen, Kevin Fu, Z. Morley Mao. Adversarial sensor attack on lidar-based perception in 
autonomous driving. CCS’ 19 



LiDAR Spoofing Attacks

45Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Rampazzi, Qi Alfred Chen, Kevin Fu, Z. Morley Mao. Adversarial sensor attack on lidar-based perception in autonomous 
driving. CCS 2019 



Deep reinforcement learning can be vulnerable
Successful attacks by adding small perturbations to state observations
(Huang et al., Kos & Song et al., Lin et al., Behzadan & Munir, Pattanaik et al., Xiao et al. ...)

DQN Pong
PGD attack
Reward: -21

(lowest)

PPO Humanoid
Robust Sarsa Attack

Reward: 719
(original 4386)

DDPG Ant
Robust Sarsa Attack

Reward: 258
(original 2462)

Wrong actions

DNN

Env. state

perturbed 
observations

true state 
observations

+
Attacker

Huan Zhang, Hongge Chen, Chaowei Xiao et.al. Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations. NeurIPS 2020



Deep reinforcement learning can be vulnerable

47

Reinforcement Learning

Xinlei Pan, Chaowei Xiao, Warren He, Bo Li, Jian Peng, Mingjie Sun, Jinfeng Yi, Mingyan Liu, Dawn Song. Characterizing attacks on deep reinforcement learning. ICML SPML’ 19



Adversarial Machine Learning 
Threat Model

Attack Defense
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Defending against Adversarial Examples is Hard

• A Brief History of defense1

• Oakland’ 16- broken 
• ICLR’ 17- broken
• CCS’ 17- broken
• ICLR’ 18 - broken (mostly)
• CVPR’ 18 – broken 
• NeurIPS’ 18 –broken (some)

• Dup-net (broken), gather-vector guidance (broken).
• Error spaces containing adversarial are large2

49

1Nicholas Carlini: Making and Measuring Progress in Adversarial Machine Learning 
2Ian Goodfellow and Nicolas Papernot. Is attacking machine learning easier than defending it ? Blog



Defense in 3D domain



Defense in 3D domain

• Annotation is expensive 



Adversarially Robust 3D Point Cloud Recognition 
Using Self-Supervisions 

Jiachen Sun, Yulong Cao, Christopher Choy, Zhiding Yu, Chaowei Xiao, Anima Anandkumar, Zhuoqing Mao, Adversarially Robust 3D Point Cloud Recognition Using Self-Supervisions



Adversarially Robust 3D Point Cloud Recognition 
Using Self-Supervisions 



Adversarial Pre-training for Fine-tuning

Table 2: Evaluation Results (%) of Adversarial Pre-training for Fine-tuning



Adversarial Joint Training.

Table 3: Evaluation Results (%) of Adversarial Joint Training. 



Transferability  Analysis

Robust Accuracy on Transfer Attacks among Fine-tuned Models 
from Different SSL Tasks on ModelNet40. 
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