
Detecting Reliable Instances for
Learning
Judy Hoffman

Adversarial Machine Learning in Computer Vision
CVPR Workshop 2021

Standard Supervised Learning

Standard Supervised Learning

Random Sampling

Loss

Potential Data Pitfalls

Incorrect Label

Label: “Cat”
Prediction: “Cat”

Variable Difficulty

Label: “Dog”
Prediction: “Cat”

Adversarial Manipulations

Label: “Dog”
Prediction: “Cat”

Potential Data Pitfalls

Incorrect Label

Label: “Cat”
Prediction: “Cat”

Variable Difficulty

Label: “Dog”
Prediction: “Cat”

Adversarial Manipulations

Label: “Dog”
Prediction: “Cat”

Learning with
Noise

Adversarial
Robustness

Curriculum
Learning

Enforcing Reliability

Adversarial Examples

[Goodfellow et al. ICLR 2015]

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Visualize Perturbation Space

Visualize Perturbation Space

Training point

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

CVPR
#3384

CVPR
#3384

CVPR 2017 Submission #3384. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

RGB
MNIST

USPS

SVHN

Digits adaptation Cross-modality adaptation (NYUD)

HHA

Figure 4: We evaluate ADDA on unsupervised adaptation across four domain shifts in two different settings. The first setting
is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality
adaptation task between RGB and depth modalities from the NYU depth dataset (right).

MNIST ! USPS USPS ! MNIST SVHN ! MNIST

Method ! ! !
Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [16]
Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge
ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

split as the target domain. This corresponds to 2,186 labeled
source images and 2,401 unlabeled target images. Figure 4
visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB
and HHA encoded depth images [23], using them as source
and target domains respectively. Because the bounding boxes
are tight and relatively low resolution, accurate classification
is quite difficult, even when evaluating in-domain. In addi-
tion, the dataset has very few examples for certain classes,
such as toilet and bathtub, which directly translates
to reduced classification performance.

For this experiment, our base architecture is the VGG-16
architecture, initializing from weights pretrained on Ima-
geNet [24]. This network is then fully fine-tuned on the
source domain for 20,000 iterations using a batch size of
128. When training with ADDA, the adversarial discrim-
inator consists of three additional fully connected layers:
1024 hidden units, 2048 hidden units, then the adversarial
discriminator output. With the exception of the output, these
additionally fully connected layers use a ReLU activation
function. ADDA training then proceeds for another 20,000
iterations, again with a batch size of 128.

We find that our method, ADDA, greatly improves clas-

sification accuracy for this task. For certain categories, like
counter, classification accuracy goes from 2.9% under the
source only baseline up to 44.7% after adaptation. In general,
average accuracy across all classes improves significantly
from 13.9% to 21.1%. However, not all classes improve.
Three classes have no correctly labeled target images before
adaptation, and adaptation is unable to recover performance
on these classes. Additionally, the classes of pillow and
nightstand suffer performance loss after adaptation.

For additional insight on what effect ADDA has on classi-
fication, Figure 5 plots confusion matrices before adaptation,
after adaptation, and in the hypothetical best-case scenario
where the target labels are present. Examining the confusion
matrix for the source only baseline reveals that the domain
shift is quite large—as a result, the network is poorly condi-
tioned and incorrectly predicts pillow for the majority of
the dataset. This tendency to output pillow also explains
why the source only model achieves such abnormally high
accuracy on the pillow class, despite poor performance
on the rest of the classes.

In contrast, the classifier trained using ADDA predicts a
much wider variety of classes. This leads to decreased accu-
racy for the pillow class, but significantly higher accura-

7

28

28

Visualize Perturbation Space

Training point

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

CVPR
#3384

CVPR
#3384

CVPR 2017 Submission #3384. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

RGB
MNIST

USPS

SVHN

Digits adaptation Cross-modality adaptation (NYUD)

HHA

Figure 4: We evaluate ADDA on unsupervised adaptation across four domain shifts in two different settings. The first setting
is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality
adaptation task between RGB and depth modalities from the NYU depth dataset (right).

MNIST ! USPS USPS ! MNIST SVHN ! MNIST

Method ! ! !
Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [16]
Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge
ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

split as the target domain. This corresponds to 2,186 labeled
source images and 2,401 unlabeled target images. Figure 4
visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB
and HHA encoded depth images [23], using them as source
and target domains respectively. Because the bounding boxes
are tight and relatively low resolution, accurate classification
is quite difficult, even when evaluating in-domain. In addi-
tion, the dataset has very few examples for certain classes,
such as toilet and bathtub, which directly translates
to reduced classification performance.

For this experiment, our base architecture is the VGG-16
architecture, initializing from weights pretrained on Ima-
geNet [24]. This network is then fully fine-tuned on the
source domain for 20,000 iterations using a batch size of
128. When training with ADDA, the adversarial discrim-
inator consists of three additional fully connected layers:
1024 hidden units, 2048 hidden units, then the adversarial
discriminator output. With the exception of the output, these
additionally fully connected layers use a ReLU activation
function. ADDA training then proceeds for another 20,000
iterations, again with a batch size of 128.

We find that our method, ADDA, greatly improves clas-

sification accuracy for this task. For certain categories, like
counter, classification accuracy goes from 2.9% under the
source only baseline up to 44.7% after adaptation. In general,
average accuracy across all classes improves significantly
from 13.9% to 21.1%. However, not all classes improve.
Three classes have no correctly labeled target images before
adaptation, and adaptation is unable to recover performance
on these classes. Additionally, the classes of pillow and
nightstand suffer performance loss after adaptation.

For additional insight on what effect ADDA has on classi-
fication, Figure 5 plots confusion matrices before adaptation,
after adaptation, and in the hypothetical best-case scenario
where the target labels are present. Examining the confusion
matrix for the source only baseline reveals that the domain
shift is quite large—as a result, the network is poorly condi-
tioned and incorrectly predicts pillow for the majority of
the dataset. This tendency to output pillow also explains
why the source only model achieves such abnormally high
accuracy on the pillow class, despite poor performance
on the rest of the classes.

In contrast, the classifier trained using ADDA predicts a
much wider variety of classes. This leads to decreased accu-
racy for the pillow class, but significantly higher accura-

7

28

28

784

Vectorize

Visualize Perturbation Space

Training point

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

CVPR
#3384

CVPR
#3384

CVPR 2017 Submission #3384. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

RGB
MNIST

USPS

SVHN

Digits adaptation Cross-modality adaptation (NYUD)

HHA

Figure 4: We evaluate ADDA on unsupervised adaptation across four domain shifts in two different settings. The first setting
is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality
adaptation task between RGB and depth modalities from the NYU depth dataset (right).

MNIST ! USPS USPS ! MNIST SVHN ! MNIST

Method ! ! !
Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [16]
Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge
ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

split as the target domain. This corresponds to 2,186 labeled
source images and 2,401 unlabeled target images. Figure 4
visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB
and HHA encoded depth images [23], using them as source
and target domains respectively. Because the bounding boxes
are tight and relatively low resolution, accurate classification
is quite difficult, even when evaluating in-domain. In addi-
tion, the dataset has very few examples for certain classes,
such as toilet and bathtub, which directly translates
to reduced classification performance.

For this experiment, our base architecture is the VGG-16
architecture, initializing from weights pretrained on Ima-
geNet [24]. This network is then fully fine-tuned on the
source domain for 20,000 iterations using a batch size of
128. When training with ADDA, the adversarial discrim-
inator consists of three additional fully connected layers:
1024 hidden units, 2048 hidden units, then the adversarial
discriminator output. With the exception of the output, these
additionally fully connected layers use a ReLU activation
function. ADDA training then proceeds for another 20,000
iterations, again with a batch size of 128.

We find that our method, ADDA, greatly improves clas-

sification accuracy for this task. For certain categories, like
counter, classification accuracy goes from 2.9% under the
source only baseline up to 44.7% after adaptation. In general,
average accuracy across all classes improves significantly
from 13.9% to 21.1%. However, not all classes improve.
Three classes have no correctly labeled target images before
adaptation, and adaptation is unable to recover performance
on these classes. Additionally, the classes of pillow and
nightstand suffer performance loss after adaptation.

For additional insight on what effect ADDA has on classi-
fication, Figure 5 plots confusion matrices before adaptation,
after adaptation, and in the hypothetical best-case scenario
where the target labels are present. Examining the confusion
matrix for the source only baseline reveals that the domain
shift is quite large—as a result, the network is poorly condi-
tioned and incorrectly predicts pillow for the majority of
the dataset. This tendency to output pillow also explains
why the source only model achieves such abnormally high
accuracy on the pillow class, despite poor performance
on the rest of the classes.

In contrast, the classifier trained using ADDA predicts a
much wider variety of classes. This leads to decreased accu-
racy for the pillow class, but significantly higher accura-

7

28

28

784

Vectorize

Project onto
random 2D

orthonormal basis

Visualize Perturbation Space

Training point Sweep over a grid of
perturbations

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

CVPR
#3384

CVPR
#3384

CVPR 2017 Submission #3384. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

RGB
MNIST

USPS

SVHN

Digits adaptation Cross-modality adaptation (NYUD)

HHA

Figure 4: We evaluate ADDA on unsupervised adaptation across four domain shifts in two different settings. The first setting
is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality
adaptation task between RGB and depth modalities from the NYU depth dataset (right).

MNIST ! USPS USPS ! MNIST SVHN ! MNIST

Method ! ! !
Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [16]
Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge
ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

split as the target domain. This corresponds to 2,186 labeled
source images and 2,401 unlabeled target images. Figure 4
visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB
and HHA encoded depth images [23], using them as source
and target domains respectively. Because the bounding boxes
are tight and relatively low resolution, accurate classification
is quite difficult, even when evaluating in-domain. In addi-
tion, the dataset has very few examples for certain classes,
such as toilet and bathtub, which directly translates
to reduced classification performance.

For this experiment, our base architecture is the VGG-16
architecture, initializing from weights pretrained on Ima-
geNet [24]. This network is then fully fine-tuned on the
source domain for 20,000 iterations using a batch size of
128. When training with ADDA, the adversarial discrim-
inator consists of three additional fully connected layers:
1024 hidden units, 2048 hidden units, then the adversarial
discriminator output. With the exception of the output, these
additionally fully connected layers use a ReLU activation
function. ADDA training then proceeds for another 20,000
iterations, again with a batch size of 128.

We find that our method, ADDA, greatly improves clas-

sification accuracy for this task. For certain categories, like
counter, classification accuracy goes from 2.9% under the
source only baseline up to 44.7% after adaptation. In general,
average accuracy across all classes improves significantly
from 13.9% to 21.1%. However, not all classes improve.
Three classes have no correctly labeled target images before
adaptation, and adaptation is unable to recover performance
on these classes. Additionally, the classes of pillow and
nightstand suffer performance loss after adaptation.

For additional insight on what effect ADDA has on classi-
fication, Figure 5 plots confusion matrices before adaptation,
after adaptation, and in the hypothetical best-case scenario
where the target labels are present. Examining the confusion
matrix for the source only baseline reveals that the domain
shift is quite large—as a result, the network is poorly condi-
tioned and incorrectly predicts pillow for the majority of
the dataset. This tendency to output pillow also explains
why the source only model achieves such abnormally high
accuracy on the pillow class, despite poor performance
on the rest of the classes.

In contrast, the classifier trained using ADDA predicts a
much wider variety of classes. This leads to decreased accu-
racy for the pillow class, but significantly higher accura-

7

28

28

784

Vectorize

Project onto
random 2D

orthonormal basis

Visualize Perturbation Space

Training point Sweep over a grid of
perturbations

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

CVPR
#3384

CVPR
#3384

CVPR 2017 Submission #3384. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

RGB
MNIST

USPS

SVHN

Digits adaptation Cross-modality adaptation (NYUD)

HHA

Figure 4: We evaluate ADDA on unsupervised adaptation across four domain shifts in two different settings. The first setting
is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality
adaptation task between RGB and depth modalities from the NYU depth dataset (right).

MNIST ! USPS USPS ! MNIST SVHN ! MNIST

Method ! ! !
Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [16]
Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge
ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

split as the target domain. This corresponds to 2,186 labeled
source images and 2,401 unlabeled target images. Figure 4
visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB
and HHA encoded depth images [23], using them as source
and target domains respectively. Because the bounding boxes
are tight and relatively low resolution, accurate classification
is quite difficult, even when evaluating in-domain. In addi-
tion, the dataset has very few examples for certain classes,
such as toilet and bathtub, which directly translates
to reduced classification performance.

For this experiment, our base architecture is the VGG-16
architecture, initializing from weights pretrained on Ima-
geNet [24]. This network is then fully fine-tuned on the
source domain for 20,000 iterations using a batch size of
128. When training with ADDA, the adversarial discrim-
inator consists of three additional fully connected layers:
1024 hidden units, 2048 hidden units, then the adversarial
discriminator output. With the exception of the output, these
additionally fully connected layers use a ReLU activation
function. ADDA training then proceeds for another 20,000
iterations, again with a batch size of 128.

We find that our method, ADDA, greatly improves clas-

sification accuracy for this task. For certain categories, like
counter, classification accuracy goes from 2.9% under the
source only baseline up to 44.7% after adaptation. In general,
average accuracy across all classes improves significantly
from 13.9% to 21.1%. However, not all classes improve.
Three classes have no correctly labeled target images before
adaptation, and adaptation is unable to recover performance
on these classes. Additionally, the classes of pillow and
nightstand suffer performance loss after adaptation.

For additional insight on what effect ADDA has on classi-
fication, Figure 5 plots confusion matrices before adaptation,
after adaptation, and in the hypothetical best-case scenario
where the target labels are present. Examining the confusion
matrix for the source only baseline reveals that the domain
shift is quite large—as a result, the network is poorly condi-
tioned and incorrectly predicts pillow for the majority of
the dataset. This tendency to output pillow also explains
why the source only model achieves such abnormally high
accuracy on the pillow class, despite poor performance
on the rest of the classes.

In contrast, the classifier trained using ADDA predicts a
much wider variety of classes. This leads to decreased accu-
racy for the pillow class, but significantly higher accura-

7

28

28

784

Vectorize

Project onto
random 2D

orthonormal basis Perturbed Image

Visualize Perturbation Space

Training point Sweep over a grid of
perturbations

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

CVPR
#3384

CVPR
#3384

CVPR 2017 Submission #3384. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

RGB
MNIST

USPS

SVHN

Digits adaptation Cross-modality adaptation (NYUD)

HHA

Figure 4: We evaluate ADDA on unsupervised adaptation across four domain shifts in two different settings. The first setting
is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality
adaptation task between RGB and depth modalities from the NYU depth dataset (right).

MNIST ! USPS USPS ! MNIST SVHN ! MNIST

Method ! ! !
Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [16]
Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge
ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

split as the target domain. This corresponds to 2,186 labeled
source images and 2,401 unlabeled target images. Figure 4
visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB
and HHA encoded depth images [23], using them as source
and target domains respectively. Because the bounding boxes
are tight and relatively low resolution, accurate classification
is quite difficult, even when evaluating in-domain. In addi-
tion, the dataset has very few examples for certain classes,
such as toilet and bathtub, which directly translates
to reduced classification performance.

For this experiment, our base architecture is the VGG-16
architecture, initializing from weights pretrained on Ima-
geNet [24]. This network is then fully fine-tuned on the
source domain for 20,000 iterations using a batch size of
128. When training with ADDA, the adversarial discrim-
inator consists of three additional fully connected layers:
1024 hidden units, 2048 hidden units, then the adversarial
discriminator output. With the exception of the output, these
additionally fully connected layers use a ReLU activation
function. ADDA training then proceeds for another 20,000
iterations, again with a batch size of 128.

We find that our method, ADDA, greatly improves clas-

sification accuracy for this task. For certain categories, like
counter, classification accuracy goes from 2.9% under the
source only baseline up to 44.7% after adaptation. In general,
average accuracy across all classes improves significantly
from 13.9% to 21.1%. However, not all classes improve.
Three classes have no correctly labeled target images before
adaptation, and adaptation is unable to recover performance
on these classes. Additionally, the classes of pillow and
nightstand suffer performance loss after adaptation.

For additional insight on what effect ADDA has on classi-
fication, Figure 5 plots confusion matrices before adaptation,
after adaptation, and in the hypothetical best-case scenario
where the target labels are present. Examining the confusion
matrix for the source only baseline reveals that the domain
shift is quite large—as a result, the network is poorly condi-
tioned and incorrectly predicts pillow for the majority of
the dataset. This tendency to output pillow also explains
why the source only model achieves such abnormally high
accuracy on the pillow class, despite poor performance
on the rest of the classes.

In contrast, the classifier trained using ADDA predicts a
much wider variety of classes. This leads to decreased accu-
racy for the pillow class, but significantly higher accura-

7

28

28

784

Vectorize

Project onto
random 2D

orthonormal basis

Model Score

Perturbed Image

MNIST LeNet Decisions Around Training Point

Training
Data Point

Non-smooth
Decision Boundary

Small perturbations
lead to new outputs

Adversarial Training

[Madry et. al. ICLR 18]

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

CE Loss

+

Adversarial Image

CE Loss

Panda

ϵ

Adversarial StabilityPublished as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

+

Adversarial Image

ϵ Predadv

Correct Prediction?

Panda

Instance Adaptive Adversarial TrainingUnder review as a conference paper at ICLR 2020

Bird

Deer

Figure 1: Overview of instance adaptive adversarial training. Samples close to the decision boundary
(bird on the left) have nearby samples from a different class (deer) within a small Lp ball, making
the constraints imposed by PGD-8 / PGD-16 adversarial training infeasible. Samples far from the
decision boundary (deer on the right) can withstand large perturbations well beyond ✏ = 8. Our
adaptive adversarial training correctly assigns the perturbation radius (shown in dotted line) so that
samples within each Lp ball maintain the same class.

The above observation naturally motivates adversarial training with instance adaptive perturbation
radii that are customized to each training image. By choosing larger robustness radii at locations
where class manifolds are far apart, and smaller radii at locations where class manifolds are close
together, we get high adversarial robustness where possible while minimizing the clean accuracy
loss that comes from enforcing overly-stringent constraints on images that lie near class bound-
aries. As a result, instance adaptive training significantly improves the tradeoff between accuracy
and robustness, breaking through the pareto frontier acheived by standard adversarial training. Ad-
ditionally, we show that the learned instance-specific perturbation radii are interpretable; samples
with small radii are often ambiguous and have nearby images of another class, while images with
large radii have unambiguous class labels that are difficult to manipulate.

2 BACKGROUND

Adversarial attacks are data items containing small perturbations that cause misclassification in neu-
ral network classifiers (Szegedy et al., 2014). Popular methods for crafting attacks include the fast
gradient sign method (FGSM) (Goodfellow et al., 2015) which is a one-step gradient attack, pro-
jected gradient descent (PGD) (Madry et al., 2018) which is a multi-step extension of FGSM, the
C/W attack (Carlini & Wagner, 2017), DeepFool (Moosavi-Dezfooli et al., 2016), and many more.
All these methods use the gradient of the loss function with respect to inputs to construct addi-
tive perturbations with a norm-constraint. Alternative attack metrics include spatial transformer
attacks (Xiao et al., 2018), attacks based on Wasserstein distance in pixel space (Wong et al., 2019),
etc.

Defending against adversarial attacks is a crucial problem in machine learning. Many early de-
fenses (Buckman et al., 2018; Samangouei et al., 2018; Dhillon et al., 2018), were broken by strong
attacks. Fortunately, adversarially training is one defense strategy that remains fairly resistant to
most existing attacks.

Let D = {(xi, yi)}ni=1 denote the set of training samples in the input dataset. In this paper, we focus
on classification problems, hence, yi 2 {1, 2, . . . Nc}, where Nc denotes the number of classes. Let
f✓(x) : Rc⇥m⇥n ! RNc denote a neural network model parameterized by ✓. Classifiers are often

2

Balaji, Goldstein, Hoffman. arXiv 2020.

Adversarial Training

[Madry et. al. ICLR 18]

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

CE Loss

+

Adversarial Image

CE Loss

Panda

ϵ

Instance Adaptive Adversarial TrainingPublished as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

CE Loss

+

Adversarial Image

CE Loss

Panda

ϵi

Balaji, Goldstein, Hoffman. arXiv 2020.

Instance Adaptive Adversarial Training
Under review as a conference paper at ICLR 2020

ε = 0.20 ε = 0.83 ε = 1.71 ε = 1.25

ε
ε

ε

(a) Samples from bottom 1% ✏

ε = 28.07 ε = 28.13 ε = 28.23 ε = 28.57

(b) Samples from top 1% ✏

Figure 2: Visualizing training samples and their perturbations. The left panel shows samples that
are assigned small ✏ (displayed below images) during adaptive training. These images are close to
class boundaries, and change class when perturbed with ✏ � 8. The right panel show images that are
assigned large ✏. These lie far from the decision boundary, and retain class information even with
very large perturbations. All ✏ live in the range [0, 255]

Algorithm 2 ✏ selection algorithm
Require: i: Sample index, j: Epoch index
Require: �: Smoothing constant, �: Discretization for ✏ search.

1: Set ✏1 = ✏mem[j � 1, i] + �
2: Set ✏2 = ✏mem[j � 1, i]
3: Set ✏3 = ✏mem[j � 1, i]� �
4: if f✓(PGDk(xi, yi, ✏1)) predicts as yi then
5: Set ✏i = ✏1
6: else if f✓(PGDk(xi, yi, ✏2)) predicts as yi then
7: Set ✏i = ✏2
8: else
9: Set ✏i = ✏3

10: end if
11: ✏i (1� �)✏mem[j � 1, i] + �✏i
12: Update ✏mem[j, i] ✏i
13: Return ✏i

4 EXPERIMENTS

To evaluate the robustness and generalization of our models, we report the following metrics: (1) test
accuracy of unperturbed (natural) test samples, (2) adversarial accuracy of white-box PGD attacks,
(3) adversarial accuracy of transfer attacks and (4) accuracy of test samples under common image
corruptions (Hendrycks & Dietterich, 2019). Following the protocol introduced in Hendrycks &
Dietterich (2019), we do not train our models on any image corruptions.

4.1 CIFAR

On CIFAR-10 and CIFAR-100 datasets, we perform experiments on Resnet-18 and WideRenset-32-
10 models following (Madry et al., 2018; Zhang et al., 2019). All models are trained on PGD-10
attacks i.e., 10 steps of PGD iterations are used for crafting adversarial attacks during training.
In the whitebox setting, models are evaluated on: (1) PGD-10 attacks with 5 random restarts, (2)
PGD-100 attacks with 5 random restarts, and (3) PGD-1000 attacks with 2 random restarts. For

4

Balaji, Goldstein, Hoffman. arXiv 2020.

Adaptive Adversarial Training: CIFAR-10

Balaji, Goldstein, Hoffman. arXiv 2020.

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

CVPR
#8326

CVPR
#8326

CVPR 2020 Submission #8326. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Instance Adaptive Adversarial Training:

Improved Accuracy-Robustness Trade-offs in Neural Nets

We thank all the reviewers for their valuable comments.
All the reviewers appreciate the motivation of the paper and
the thorough empirical evaluation.

Reviewer 1: Stability of the algorithm: The reviewer
suggests that the algorithm could be unstable as the pertur-
bation radius ✏ is selected using robustness in the previous
iteration. We have addressed this issue by employing a mo-
mentum term of the ✏ updates i.e., ✏cur = (1 � �)✏prev +
�✏cur. This is mentioned in Step 11 of Algorithm 2 in page
4 of main paper. Smoothing ✏ resolves the instability issues.

Imagenet results: On Imagenet experiments, adversar-
ial robustness is not always lower than baseline. For ✏ = 4
and ✏ = 8 (which is the standard test perturbation used for
CIFAR experiments), our approach outperforms standard
adversarial training. Performance drop occurs only at very
large perturbation radius (✏ = 16). However, our natural

accuracy is 10% better than baseline, which is more im-
portant in several real life applications. We would reiterate
that our focus not solely improving adversarial robustness,
but rather on improving the robustness-accuracy tradeoff.

Use of natural examples in training: Using a com-
bination of natural and adversarial samples in adversarial
training does not improve robustness-accuracy tradeoff. We
observed that performing adversarial training only on the
correctly classified samples (as suggested by the reviewer)
improves natural accuracy at the cost of big drop in adver-
sarial robustness, which leads to worse tradeoff than our
approach. Our approach improves natural accuracy while
preserving robustness (Figure 1). Hence, the improvements
we achieve is because of the instance adaptive algorithm,
and not merely due to the use of natural examples.

The issues with using combination of natural and ad-
versarial loss has been pointed out in other papers [3]. In
Imagenet experiments, [3] observed that a model trained
with a combination of natural and adversarial losses has
non-asymptotic behavior where adversarial robustness keep
dropping as the attack iterations increase (Figure 2 of [3]).
On the other hand, robustness saturates for a model trained
only using adversarial samples, which is desirable. As we
show in Figure 4 of supplementary material, our instance
adaptive training obtains the desired saturating behavior.

Comparison to SOTA defenses: The focus of this pa-
per is not obtaining SOTA defense performance, but to im-
prove the robustness-accuracy tradeoff. We chose PGD as
it is one of the most popular adversarial training methods.
However, our algorithm is general and can be extended for
other defenses. Also, the reviewer suggests that a concur-
rent work [2] has a conclusion that adversarial examples

from misclassified samples are important. While [2] im-
proves robustness, accuracy on natural examples drop.

Other experiments: Per PAMI-TC policy, we are un-
able to provide additional analysis and experiments. How-
ever, we would like to take the suggestions of the reviewer
and add additional experiments in the final draft.

Figure 1: Improving robustness-accuracy tradeoff

Reviewer 2: We thank the reviewer for the positive com-
ments. Regarding comparison with the concurrent work [1],
we mentioned the differences of our approach with [1] in
lines 139-145. We will elaborate more in the final draft.
Due to the concurrency of the work and the unavailability
of code, we were not able to compare our approach with [1].

Reviewer 3: We agree that our method does not consis-
tently outperform standard adversarial training. But, this
is not the focus of the paper. The main focus of this pa-
per is to understand and improve the robustness-accuracy

tradeoff. As seen in Figure. 1, we clearly outperform
robustness-accuracy tradeoff compared to adversarial train-
ing. Also, with a marginal drop in adversarial robustness,
we achieve a significant improvement of natural accuracy
(5% for CIFAR-10, 9% for CIFAR-100 and 10% for Ima-
genet). Improvement in natural accuracy is more important
than adversarial robustness in many applications.

References

[1] Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui,
and Ruitong Huang. Max-margin adversarial (mma) training:
Direct input space margin maximization through adversarial
training. arXiv preprint arXiv:1812.02637, 2018. 1

[2] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun
Ma, and Quanquan Gu. Improving adversarial robustness re-
quires revisiting misclassified examples. In ICLR, 2020. 1

[3] Cihang Xie and Alan L. Yuille. Intriguing properties of adver-
sarial training. CoRR, abs/1906.03787, 2019. 1

Semi-supervised Learning

Supervised Loss

Labeled Data

Unsupervised LossUnlabeled Data

Leverages labeled data to
“pseudo-label” unlabeled data

Adversarial Training

[Madry et. al. ICLR 18]

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

CE Loss

+

Adversarial Image

CE Loss

Panda

What if the label is unknown?

Virtual Adversarial Training

[Miyato et. al. ICLR 2016]

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

CE Loss

+

Adversarial Image

CE Loss

Clean 
Prediction

Virtual Adversarial TrainingPublished as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

CE Loss

+

Adversarial Image

CE Loss

Clean 
Prediction

[Miyato et. al. ICLR 2016]

Unsupervised Domain Adaptation

Source Data

Supervised
Loss

Target Data

Cup
Bear

La
be

le
d

U
nl

ab
el

ed

Unsupervised
Adaptive Loss

Tr
an

sf
er

DIRT-T / VADA

Published as a conference paper at ICLR 2018

We verify empirically that, for sufficiently deep layers, jointly achieving small source generalization
error and feature divergence does not imply high accuracy on the target task (Table 5). Given the
limitations of domain adversarial training, we wish to identify additional constraints that one can
place on the model to achieve better, more reliable domain adaptation.

4 CONSTRAINING VIA CONDITIONAL ENTROPY MINIMIZATION

{xs, ys}

{xt}

Cross-Entropy	+	VAT

Conditional	Entropy	+	VAT

Divergence

Figure 1: VADA improves upon domain adversarial training by additionally penalizing violations
of the cluster assumption.

In this paper, we apply the cluster assumption to domain adaptation. The cluster assumption states
that the input distribution X contains clusters and that points in the same cluster come from the same
class. This assumption has been extensively studied and applied successfully to a wide range of
classification tasks (see Section 2). If the cluster assumption holds, the optimal decision boundaries
should occur far away from data-dense regions in the space of X (Chapelle & Zien, 2005). Following
Grandvalet & Bengio (2005), we achieve this behavior via minimization of the conditional entropy
with respect to the target distribution,

Lc(✓;Dt) = �Ex⇠Dt

⇥
h✓(x)

> lnh✓(x)
⇤
. (6)

Intuitively, minimizing the conditional entropy forces the classifier to be confident on the unlabeled
target data, thus driving the classifier’s decision boundaries away from the target data (Grandvalet
& Bengio, 2005). In practice, the conditional entropy must be empirically estimated using the
available data. However, Grandvalet & Bengio (2005) note that this approximation breaks down
if the classifier h is not locally-Lipschitz. Without the locally-Lipschitz constraint, the classifier is
allowed to abruptly change its prediction in the vicinity of the training data points, which 1) results
in a unreliable empirical estimate of conditional entropy and 2) allows placement of the classifier
decision boundaries close to the training samples even when the empirical conditional entropy is
minimized. To prevent this, we propose to explicitly incorporate the locally-Lipschitz constraint via
virtual adversarial training (Miyato et al., 2017) and add to the objective function the additional term

Lv(✓;D) = Ex⇠D

max
krk✏

DKL(h✓(x)kh✓(x + r))

�
, (7)

which enforces classifier consistency within the norm-ball neighborhood of each sample x. Note that
virtual adversarial training can be applied with respect to either the target or source distributions. We
can combine the conditional entropy minimization objective and domain adversarial training to yield

min.
✓

Ly(✓;Ds) + �dLd(✓;Ds, Dt) + �sLv(✓;Ds) + �t [Lv(✓;Dt) + Lc(✓;Dt)] , (8)

a basic combination of domain adversarial training and semi-supervised training objectives. We
refer to this as the Virtual Adversarial Domain Adaptation (VADA) model. Empirically, we ob-
served that the hyperparameters (�d, �s, �t) are easy to choose and work well across multiple tasks
(Appendix B).

H�H-Distance Minimization. VADA aligns well with the theory of domain adaptation provided
in Theorem 1. Let the loss,

Lt(✓) = Lv(✓;Dt) + Lc(✓;Dt), (9)

4

Shu et. al. ICLR 2018

Example: Entropy Minimization

Labeled UnlabeledClasses = , Class
boundary

Supervised Decision Boundary

Example: Entropy Minimization

Labeled UnlabeledClasses = , Class
boundary

Error Accumulation

Self-Training with Unreliable Instances

• Under a domain shift, some
target categories may be
misaligned

• Entropy minimization on such
instances would increase
model confidence, reinforcing
errors

Entropy Minimization for UDA

Poor Initialization

Source
Target

Labeled
Unlabeled

Classes = ,
Class
boundary

Self-Training with Unreliable Instances

• Under a domain shift, some
target categories may be
misaligned

• Entropy minimization on such
instances would increase
model confidence, reinforcing
errors

Entropy Minimization for UDA

Poor Initialization

Source
Target

Labeled
Unlabeled

Classes = ,
Class
boundary

Prior Work: Measure Image Aug Differences

Natural and Adversarial Error Detection using
Invariance to Image Transformations. Bahat, Irani,
Shakhnarovich, arXiv 2019

Detecting Errors Learned Invariance
(Contrastive Learning)

SimCLR, Chen et al.
ICML 2020

MoCo, He et al.

CVPR 2020

SENTRY 
Selective Entropy Optimization via Committee

Consistency for Unsupervised Domain Adaptation

Shivam KhareViraj Prabhu Deeksha Karthik Judy Hoffman

34

SENTRY: Selective Entropy Optimization via Committee Consistency

Key Idea
1. Identify reliable instances

using predictive
consistency1,2,3
• Model confidence is known to

be uncalibrated under
distribution shift [Ovadia NeurIPS 2019]

2. Increase model confidence
on highly consistent target
instances, reduce on
inconsistent

1. Bahat et al. arXiv 2019.
2. Chen et al. ICML 2020.
3. Sohn et al., NeurIPS 2020.

Prabhu, Khare, Karthik, Hoffman. arXiv:2012.11460, 2021

Selective Entropy Minimization

Poor Initialization

Source
Target

Labeled
Unlabeled

Classes = ,
Class
boundary

SENTRY: Selective Entropy Optimization via Committee Consistency

Key Idea
1. Identify reliable instances

using predictive
consistency1,2,3
• Model confidence is known to

be uncalibrated under
distribution shift [Ovadia NeurIPS 2019]

2. Increase model confidence
on highly consistent target
instances, reduce on
inconsistent

1. Bahat et al. arXiv 2019.
2. Chen et al. ICML 2020.
3. Sohn et al., NeurIPS 2020.

Prabhu, Khare, Karthik, Hoffman. arXiv:2012.11460, 2021

Selective Entropy Minimization

Poor Initialization

Source
Target

Labeled
Unlabeled

Classes = ,
Class
boundary

SENTRY: Selective Entropy Optimization via Committee Consistency

Prabhu, Khare, Karthik, Hoffman. arXiv, 2021

BearSa
m

pl
ed

 w
/  

C
la

ss
 B

al
an

ci
ng

SENTRY: Selective Entropy Optimization via Committee Consistency

Prabhu, Khare, Karthik, Hoffman. arXiv, 2021

BearSa
m

pl
ed

 w
/  

C
la

ss
 B

al
an

ci
ng

Model

Supervised Loss

SENTRY: Selective Entropy Optimization via Committee Consistency

Prabhu, Khare, Karthik, Hoffman. arXiv, 2021

BearSa
m

pl
ed

 w
/  

C
la

ss
 B

al
an

ci
ng

Sa
m

pl
ed

 w
/ P

se
ud

o 
C

la
ss

 B
al

an
ci

ng Model

Supervised Loss

“bear”

SENTRY: Selective Entropy Optimization via Committee Consistency

Prabhu, Khare, Karthik, Hoffman. arXiv, 2021

BearSa
m

pl
ed

 w
/  

C
la

ss
 B

al
an

ci
ng

Sa
m

pl
ed

 w
/ P

se
ud

o 
C

la
ss

 B
al

an
ci

ng Model

Supervised Loss

“bear”

tracker

SENTRY: Selective Entropy Optimization via Committee Consistency

Prabhu, Khare, Karthik, Hoffman. arXiv, 2021

BearSa
m

pl
ed

 w
/  

C
la

ss
 B

al
an

ci
ng

Sa
m

pl
ed

 w
/ P

se
ud

o 
C

la
ss

 B
al

an
ci

ng Model

Supervised Loss

“bear”

tracker

SENTRY: Selective Entropy Optimization via Committee Consistency

Prabhu, Khare, Karthik, Hoffman. arXiv, 2021

BearSa
m

pl
ed

 w
/  

C
la

ss
 B

al
an

ci
ng

Sa
m

pl
ed

 w
/ P

se
ud

o 
C

la
ss

 B
al

an
ci

ng Model

Supervised Loss

“bear”

“dog”

“bear”

tracker

SENTRY: Selective Entropy Optimization via Committee Consistency

Prabhu, Khare, Karthik, Hoffman. arXiv, 2021

BearSa
m

pl
ed

 w
/  

C
la

ss
 B

al
an

ci
ng

Sa
m

pl
ed

 w
/ P

se
ud

o 
C

la
ss

 B
al

an
ci

ng Model

Supervised Loss

“bear”

“dog”

“bear”

Selective Entropy
Loss

tracker

Selective Entropy Loss

CONSISTENCY
CHECKER

“bear”

“dog”

“bear”

inconsistent

consistent

Prabhu, Khare, Karthik, Hoffman. arXiv, 2021

Majority vote

Unanimous vote

confidence

Maximize Entropy

Minimize Entropy
confidence

SENTRY Results: Image Classification

Prabhu, Khare, Karthik, Hoffman 2021

MiniDomainNet1,2
Natural label shifts

1. Peng et al., ICCV 2019. 2. Tan et al., ECCVW 2020.

SENTRY Results: MiniDomainNet
MiniDomainNet (40 classes, 12 shiKs)

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

0

22.5

45

67.5

90

DAN JAN DANN MCD BBSE F-DANN COAL InstaPBM SENTRY

81.4
77.875.9

69.5

55.3

65.4

74.572.5
67.1

Distribution-matching based Label
shift

Data + label
distribution shift

1. Long et al., ICML 2015.
2. Long et al., ICML 2017.
3. Ganin et al., ICML 2015.
4. Saito et al., CVPR 2018.
5. Lipton et al., ICML 2018.
6. Wu et al., ICML 2019.
7. Tan et al., ECCVW 2020.
8. Li et al., arXiv 2020.

source (66.8)
+3.6%

”relaxed” DMself-train on
confident

pseudolabels

Entropy
minimization +

contrastive loss +
mixup loss

SENTRY Results: Office Home
Office Home1

1. Venkateswara et al., CVPR 2017. 2. Tan et al., ECCVW 2020.

Custom label shifts2

SENTRY Results: Office Home
OfficeHome-LDS (65 classes, 6 shiKs)

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

50

55

60

65

70

F-DANN COAL InstaPBM MDD+I.A. SENTRY

65.3

61.7

58.958.4

53.9

Wu et al., ICML 2019. Tan et al., ECCVW 2020. Li et al., arXiv 2020.
Jiang et al., ICML 2020. Long et al., NeurIPS 2018. Zhang et al., ICML 2019

source (54.4)

+3.6%

SENTRY sets a new state-of-the-art of
27/31 shifts studied

Prabhu, Khare, Karthik, Hoffman. arXiv, 2021

Results: Controlling Target Distribution

MNIST-LT label histograms SVHN→ MNIST-LT

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

0

25

50

75

100

MMD DANN COAL InstaPBM SENTRY

85.6

65.9
70

60.6
55.1

85.6

68.970.2
66.9

56.2

93.9

77.9

67.1
71.5

56.7

92.990.7

78.8

68

53.4

IF=1 IF=20 IF=50 IF=100

Long et al., ICML 2015. Ganin et al., ICML 2015. Tan et al., ECCVW 2020. Li et al., arXiv 2020.

source (68.1)

+13.6%

Ablating SENTRY: Selection
Increasing % of data is

aligned over time
Predictive consistency is a

good reliability measure

Prabhu, Khare, Karthik, Hoffman. arXiv:2012.11460, 2021

Summary

Key Idea: Decide when to learn

Learning can be derailed by

- Unreliable labels

- Label noise

- Manipulated

- Model misalignment

- Unreliable samples

- Inherently ambiguous

- Different from prior data

- Manipulated

Under review as a conference paper at ICLR 2020

Bird

Deer

Figure 1: Overview of instance adaptive adversarial training. Samples close to the decision boundary
(bird on the left) have nearby samples from a different class (deer) within a small Lp ball, making
the constraints imposed by PGD-8 / PGD-16 adversarial training infeasible. Samples far from the
decision boundary (deer on the right) can withstand large perturbations well beyond ✏ = 8. Our
adaptive adversarial training correctly assigns the perturbation radius (shown in dotted line) so that
samples within each Lp ball maintain the same class.

The above observation naturally motivates adversarial training with instance adaptive perturbation
radii that are customized to each training image. By choosing larger robustness radii at locations
where class manifolds are far apart, and smaller radii at locations where class manifolds are close
together, we get high adversarial robustness where possible while minimizing the clean accuracy
loss that comes from enforcing overly-stringent constraints on images that lie near class bound-
aries. As a result, instance adaptive training significantly improves the tradeoff between accuracy
and robustness, breaking through the pareto frontier acheived by standard adversarial training. Ad-
ditionally, we show that the learned instance-specific perturbation radii are interpretable; samples
with small radii are often ambiguous and have nearby images of another class, while images with
large radii have unambiguous class labels that are difficult to manipulate.

2 BACKGROUND

Adversarial attacks are data items containing small perturbations that cause misclassification in neu-
ral network classifiers (Szegedy et al., 2014). Popular methods for crafting attacks include the fast
gradient sign method (FGSM) (Goodfellow et al., 2015) which is a one-step gradient attack, pro-
jected gradient descent (PGD) (Madry et al., 2018) which is a multi-step extension of FGSM, the
C/W attack (Carlini & Wagner, 2017), DeepFool (Moosavi-Dezfooli et al., 2016), and many more.
All these methods use the gradient of the loss function with respect to inputs to construct addi-
tive perturbations with a norm-constraint. Alternative attack metrics include spatial transformer
attacks (Xiao et al., 2018), attacks based on Wasserstein distance in pixel space (Wong et al., 2019),
etc.

Defending against adversarial attacks is a crucial problem in machine learning. Many early de-
fenses (Buckman et al., 2018; Samangouei et al., 2018; Dhillon et al., 2018), were broken by strong
attacks. Fortunately, adversarially training is one defense strategy that remains fairly resistant to
most existing attacks.

Let D = {(xi, yi)}ni=1 denote the set of training samples in the input dataset. In this paper, we focus
on classification problems, hence, yi 2 {1, 2, . . . Nc}, where Nc denotes the number of classes. Let
f✓(x) : Rc⇥m⇥n ! RNc denote a neural network model parameterized by ✓. Classifiers are often

2

Bear

Model

Supervised
Loss

“bear”

“dog”

“bea

Selective
Entropy Loss

trac

Thank you

Daniel Bolya

Prithvijit  
Chattopadhyay

Rohit Mittapali

Shivam KhareViraj Prabhu Deeksha Karthik

Sean Foley Sruthi Sudhakar Arvind  
Krishnakumar

Kartik  
Sarangmath

Bhavika Devnani Luis Bermudez

Summary

Key Idea: Decide when to learn

Learning can be derailed by

- Unreliable labels

- Label noise

- Manipulated

- Model misalignment

- Unreliable samples

- Inherently ambiguous

- Different from prior data

- Manipulated

Bird

Deer

Bear

Model

Supervised
Loss

“bear”

“dog”

“bea

Selective
Entropy Loss

trac

Questions?
judy@gatech.edu

