Detecting Reliable Instances for Learning

Judy Hoffman Adversarial Machine Learning in Computer Vision **CVPR Workshop 2021**

Standard Supervised Learning

Standard Supervised Learning

Random Sampling

Incorrect Label

Label: "Cat" **Prediction:** "Cat"

Label: "Dog" **Prediction:** "Cat"

Potential Data Pitfalls

Adversarial Manipulations

Variable Difficulty

Label: "Dog" **Prediction:** "Cat"

Incorrect Label

Learning with Noise

Label: "Cat" **Prediction:** "Cat"

Label: "Dog" **Prediction:** "Cat"

Potential Data Pitfalls

Adversarial Manipulations

Variable Difficulty

Curriculum Learning

Label: "Dog" **Prediction:** "Cat"

Enforcing Reliability

Adversarial Examples

 $+.007 \times$

 $\boldsymbol{\mathcal{X}}$

"panda" 57.7% confidence

 $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$

"nematode" 8.2% confidence

[Goodfellow et al. ICLR 2015]

Training point

28

Sweep over a grid of

Perturbed Image

MNIST LeNet Decisions Around Training Point

Non-smooth Decision Boundary

Small perturbations lead to new outputs

g 8 3

Adversarial Training

[Madry et. al. ICLR 18]

Adversarial Stability

Panda

Instance Adaptive Adversarial Training

Balaji, Goldstein, Hoffman. arXiv 2020.

Adversarial Training

[Madry et. al. ICLR 18]

Instance Adaptive Adversarial Training

Balaji, Goldstein, Hoffman. arXiv 2020.

Instance Adaptive Adversarial Training

(a) Samples from bottom 1% ϵ

Balaji, Goldstein, Hoffman. arXiv 2020.

(b) Samples from top 1% ϵ

Adaptive Adversarial Training: CIFAR-10

Balaji, Goldstein, Hoffman. arXiv 2020.

Semi-supervised Learning

Labeled Data

Unlabeled Data

Leverages labeled data to "pseudo-label" unlabeled data

Adversarial Training

[Madry et. al. ICLR 18]

Virtual Adversarial Training

[Miyato et. al. ICLR 2016]

Virtual Adversarial Training

[Miyato et. al. ICLR 2016]

Unsupervised Domain Adaptation

Target Data

Unlabeled

Shu et. al. ICLR 2018

Example: Entropy Minimization

Supervised Decision Boundary

Example: Entropy Minimization

Error Accumulation

oeled Ounlabeled ---- Class boundary

Self-Training with Unreliable Instances

 Under a domain shift, some target categories may be misaligned

 Entropy minimization on such instances would increase model confidence, reinforcing errors

$$egin{aligned} \mathcal{L}_{CEM} &= \mathbb{E}_{\mathbf{x} au \sim \mathcal{P}_{\mathcal{T}}}[\mathcal{H}_{\Theta}(y \mid \mathbf{x}_{\mathcal{T}})] \ &= \mathbb{E}_{\mathbf{x}_{\mathcal{T}} \sim \mathcal{P}_{\mathcal{T}}} \Big[\sum_{c=1}^{C} -p_{\Theta}(y = c \mid \mathbf{x}_{\mathcal{T}}) \log p_{\Theta}(y = c \mid \mathbf{x}_{\mathcal{T}})$$

Entropy Minimization for UDA

Poor Initialization

 $c \mid \mathbf{x}_{\mathcal{T}})$

Self-Training with Unreliable Instances

 Under a domain shift, some target categories may be misaligned

 Entropy minimization on such instances would increase model confidence, reinforcing errors

$$egin{aligned} \mathcal{L}_{CEM} &= \mathbb{E}_{\mathbf{x}_{\mathcal{T}} \sim \mathcal{P}_{\mathcal{T}}}[\mathcal{H}_{\Theta}(y \mid \mathbf{x}_{\mathcal{T}})] \ &= \mathbb{E}_{\mathbf{x}_{\mathcal{T}} \sim \mathcal{P}_{\mathcal{T}}}igg[\sum_{c=1}^C -p_{\Theta}(y = c \mid \mathbf{x}_{\mathcal{T}}) \log p_{\Theta}(y = c \mid \mathbf{x}_{\mathcal{T}}) igg] \end{aligned}$$

Entropy Minimization for UDA

Poor Initialization

Classes =
$$\{ \bigcirc, \land \}$$
 Source \bigcirc Labeled \bigcirc Class boundar

Prior Work: Measure Image Aug Differences

Natural and Adversarial Error Detection using Invariance to Image Transformations. Bahat, Irani, Shakhnarovich, arXiv 2019

Detecting Errors

Learned Invariance (Contrastive Learning)

SENTRY Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation

Viraj Prabhu

Shivam Khare

Deeksha Karthik

Judy Hoffman

Key Idea

- Identify reliable instances 1. using predictive consistency^{1,2,3}
 - Model confidence is known to be uncalibrated under distribution shift [Ovadia NeurIPS 2019]
- 2. Increase model confidence on highly consistent target instances, reduce on inconsistent

- Bahat et al. arXiv 2019.
- Chen et al. ICML 2020. 2.
- Sohn et al., NeurIPS 2020. 3.

SENTRY: Selective Entropy Optimization via Committee Consistency

Prabhu, Khare, Karthik, Hoffman. arXiv:2012.11460, 2021

Key Idea

- Identify reliable instances 1. using predictive consistency^{1,2,3}
 - Model confidence is known to be uncalibrated under distribution shift [Ovadia NeurIPS 2019]
- 2. Increase model confidence on highly consistent target instances, reduce on inconsistent

- Bahat et al. arXiv 2019.
- Chen et al. ICML 2020. 2.
- Sohn et al., NeurIPS 2020. 3.

SENTRY: Selective Entropy Optimization via Committee Consistency

Prabhu, Khare, Karthik, Hoffman. arXiv:2012.11460, 2021

Class Balancing Sampled w/

Class Balancing Sampled w/

Selective Entropy Loss

I. Peng et al., ICCV 2019.

2. Tan et al., ECCVW 2020.

SENTRY Results: Image Classification

MiniDomainNet^{1,2}

Prabhu, Khare, Karthik, Hoffman 2021

SENTRY Results: MiniDomainNet

3.

4.

5.

6.

8.

MiniDomainNet (40 classes, 12 shifts)

SENTRY Results: Office Home

Custom label shifts²

I. Venkateswara et al., CVPR 2017. 2. Tan et al., ECCVW 2020.

Office Home¹

SENTRY Results: Office Home

Wu et al., ICML 2019. Jiang et al., ICML 2020.

Tan et al., ECCVW 2020. Long et al., NeurIPS 2018.

OfficeHome-LDS (65 classes, 6 shifts)

InstaPBM MDD+I.A.SENTRY

Li et al., arXiv 2020. Zhang et al., ICML 2019

Results: Controlling Target Distribution

MNIST-LT label histograms

Long et al., ICML 2015.

Ganin et al., ICML 2015.

SVHN→ MNIST-LT

Tan et al., ECCVW 2020.

Li et al., arXiv 2020.

Ablating SENTRY: Selection

Prabhu, Khare, Karthik, Hoffman. arXiv:2012.11460, 2021

Key Idea: Decide when to learn

Learning can be derailed by

- Unreliable labels
 - Label noise
 - Manipulated
 - Model misalignment
- Unreliable samples
 - Inherently ambiguous
 - Different from prior data
 - Manipulated

Summary

Thank you

Sean Foley

Daniel Bolya

Sruthi Sudhakar

Prithvijit Chattopadhyay

Viraj Prabhu

Shivam Khare Deeksha Karthik Bhavika Devnani Luis Bermudez

Arvind Krishnakumar

Rohit Mittapali

Kartik Sarangmath

Key Idea: Decide when to learn

