

Adversarial Examples <u>IMPROVE</u> Image Recognition

Cihang Xie
Assistant Professor, UC Santa Cruz

Adversarial Examples Are **THREATS** to Deep Networks

Can we use Adversarial Examples to **HELP** Deep Networks?

Motivation

Adversarial examples provide VALUABLE & NEW features

The loss gradient w.r.t. the input pixel of adversarially trained models is

HUMAN-ALIGNED

[Tsipras et al. 2019]

Motivation

Adversarial examples provide VALUABLE & NEW features

Adversarially trained models are pretty good at tackle

IMAGE SYNTHESIS TASKS

[Santurkar et al. 2019]

Motivation

Using features from adversarial examples ALONE are NOT ENOUGH

> Our Solution

JOINT TRAINING But with Distinction

> Our Solution

Joint Training BUT WITH DISTINCTION

Traditional BN

The statistics estimation at BN may be **CONFUSED** when facing a mixture distribution

Our Solution

Joint Training BUT WITH DISTINCTION

Proposed BN

Auxiliary BN guarantees that data from different distributions are

NORMALIZED SEPARATELY

> Our Solution

Adversarial Propagation (AdvProp)

Only Main BN is used at the INFERENCE stage

> Background --- EfficientNet

We already know THREE important scaling factors

> Background --- EfficientNet

A Better **SCALING-UP** Policy

> Results on ImageNet

> Results on ImageNet

AdvProp improves EfficientNet-B7's top-1 accuracy by 0.7% (85.2%)

> Out-of-Distribution Generalization

Networks	ImageNet-C	ImageNet-A	Stylized-ImageNet	
EfficientNet-B7	53.1%	37.7%	21.8%	
+ AdvProp	58.2% (+5.1%)	44.7% (+7.0%)	26.6% (+4.8%)	
ResNet-50	40.7%	3.1%	8.0%	

> Comparing to the Prior Art

~10X LESS, poor Xnh et 8 Str Bill Trige Raperformance

	# Params	Extra Data	Top-1 Acc.
EfficientNet-B8 + AdvProp	88M	Х	85.5%
ResNeXt-101 32x48d [20]	829M	$3000 \times \text{more}$	85.4%

> Improving Object Detection [Chen et al. CVPR'21]

Pre-training then **fine-tuning** paradigm

Finetuning <u>DIFFERENT</u> pre-trained models yields <u>SIMILAR</u> performance on both accuracy and robustness

directly augmenting down-stream object detection task

> Improving Object Detection [Chen et al. CVPR'21]

- Boost COCO accuracy up to 1.1 mAP
- Larger improvement on bigger model
- Adapt to single-class detection

Class	Object Size	# Images	Vanilla	Auto- Augment	Det-AdvProp (ours)
Donut	Small	1,585	25.4	23.9 (-1.5)	28.7 (+3.3)
Person	Medium	66,808	58.2	58.0 (-0.2)	58.5 (+0.3)
Truck	Large	6,377	28.1	25.5 (-2.6)	28.7 (+0.6)

> Improving Object Detection [Chen et al. CVPR'21]

- COCO-C: 15 corruptions and 5 severity
- Significantly improve robustness
- Larger gain under stronger corruption strength

➤ Improving Object Detection [Chen et al. CVPR'21]

every

> Shape-Texture Debiased Training [Li et al. ICLR'21]

(a) Texture image

81.4% Indian elephant

10.3% indri

8.2% black swan

(b) Content image

71.1% **tabby cat** 17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict

63.9% Indian elephant

26.4% indri

9.6% black swan

ImageNet-trained CNNs are biased towards texture [Geirhos et al. 2019]

> Shape-Texture Debiased Training [Li et al. ICLR'21]

> Shape-Texture Debiased Training [Li et al. ICLR'21]

	CLEAN Top-1 Acc.	IMAGENET-A Top-1 Acc.↑	IMAGENET-C mCE↓	S-IMAGENET Top-1 Acc.↑	FGSM Top-1 Acc.↑
ResNet-50	76.4	2.0	75.0	7.4	17.1
Debiased	76.9(+ 0.5)	3.5(+1.5)	67.5(- 7.5)	17.4(+10.0)	27.4(+10.3)
ResNet-101	77.9	5.6	69.8	9.9	23.1
Debiased	78.9(+1.0)	9.1(+3.5)	62.2(-7.6)	22.0(+ 12.1)	34.4(+11.3)
ResNet-152	78.6	7.4	67.2	11.3	25.2
Debiased	79.8(+ 1.2)	12.6(+ 5.2)	58.9(-8.3)	22.4(+11.1)	39.6(+14.4)

Takeaways

➤ Adversarially learned features are **VALUABLE**

Qualitative Evidence [Tsipras et al. 2019]

Quantitative Evidence [Xie et al. 2020]

Takeaways

Adversarially learned features are VALUABLE

> Adversarial examples can serve as a **GENERAL** data augmentation method

Takeaways

Adversarially learned features are <u>VALUABLE</u>

> Adversarial examples can serve as a GENERAL data augmentation method

> DISENTANGLED LEARNING is important when inputs come from different distributions

Segmentation

ACKNOWLEDGEMENT

COLLABORATORS

Sponsor

Multiple Positions for (Remote) Summer Interns & Visiting Students

Email: cixie@ucsc.edu

