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Adversarial Examples Are THREATS to Deep Networks

Deep 
Networks
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Can we use Adversarial Examples to HELP Deep Networks?

Deep 
Networks

king penguin adversarial perturbation chihuahua
Label: King Penguin
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The loss gradient w.r.t. the input pixel of 
adversarially trained models is 
HUMAN-ALIGNED

[Tsipras et al. 2019]

Ø Motivation

Adversarial examples provide VALUABLE & NEW features

Robust Learning Improves Generalization



Adversarially trained models are pretty good at tackle 
IMAGE SYNTHESIS TASKS

[Santurkar et al. 2019]

Ø Motivation

Adversarial examples provide VALUABLE & NEW features

Robust Learning Improves Generalization



Training EXCLUSIVELY on adversarial examples DEGRADES performance on clean images

Ø Motivation

Using features from adversarial examples ALONE are NOT ENOUGH

Simply FINETUNING with clean images IMPROVES performance on clean imagesCan we do BETTER? 

Robust Learning Improves Generalization



Ø Our Solution

JOINT TRAINING But with Distinction

king penguin adversarial perturbation chihuahua

king penguin adversarial perturbation chihuahuaking penguin adversarial perturbation chihuahua

Deep 
Networks

Catastrophic Forgetting

Robust Learning Improves Generalization



Ø Our Solution

Joint Training BUT WITH DISTINCTION

Traditional BN
The statistics estimation at BN may 
be CONFUSED when facing a 

mixture distribution

Robust Learning Improves Generalization



Proposed BN
Auxiliary BN guarantees that data 

from different distributions are 
NORMALIZED SEPARATELY

Ø Our Solution

Joint Training BUT WITH DISTINCTION

Robust Learning Improves Generalization



Ø Our Solution

Adversarial Propagation (AdvProp)

❌
Only Main BN is used at the INFERENCE stage

Robust Learning Improves Generalization



Ø Background --- EfficientNet

�D��EDVHOLQH �E��ZLGWK�VFDOLQJ �F��GHSWK�VFDOLQJ �G��UHVROXWLRQ�VFDOLQJ �H��FRPSRXQG�VFDOLQJ

�FKDQQHOV

OD\HUBL

UHVROXWLRQ�+[:

ZLGHU

GHHSHU

KLJKHU�
UHVROXWLRQ

KLJKHU�
UHVROXWLRQ

GHHSHU

ZLGHU

We already know THREE important scaling factors

Robust Learning Improves Generalization



Ø Background --- EfficientNet

�D��EDVHOLQH �E��ZLGWK�VFDOLQJ �F��GHSWK�VFDOLQJ �G��UHVROXWLRQ�VFDOLQJ �H��FRPSRXQG�VFDOLQJ
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A Better SCALING-UP Policy

Robust Learning Improves Generalization



Ø Results on ImageNet

EfficientNet family achieve the SOTA top-1 accuracy 
on ImageNet with all computational regimes

EfficientNet-B7’s 84.5% top-1 accuracy on 
ImageNet is the previous SOTA

Robust Learning Improves Generalization



Ø Results on ImageNet

AdvProp improves EfficientNet-B7’s top-
1 accuracy by 0.7% (85.2%)

Robust Learning Improves Generalization



ØOut-of-Distribution Generalization

ImageNet-C ImageNet-A Stylized-ImageNetNetworks           ImageNet-C ImageNet-A Stylized-ImageNet

EfficientNet-B7 53.1% 37.7% 21.8%

Recall on ImageNet, EfficientNet-B7 gets 84.5% top-1 accuracy

Networks           ImageNet-C ImageNet-A Stylized-ImageNet

EfficientNet-B7 53.1% 37.7% 21.8%

+ AdvProp 58.2% (+5.1%) 44.7% (+7.0%) 26.6% (+4.8%)

Networks           ImageNet-C ImageNet-A Stylized-ImageNet

EfficientNet-B7 53.1% 37.7% 21.8%

+ AdvProp 58.2% (+5.1%) 44.7% (+7.0%) 26.6% (+4.8%)

ResNet-50 40.7% 3.1% 8.0%

Robust Learning Improves Generalization



Ø Comparing to the Prior Art  

~10X LESS parameters~3,000X LESS training dataBETTER performance

Robust Learning Improves Generalization



Ø Improving Object Detection [Chen et al. CVPR’21]

Robust Learning Improves Generalization

Pre-training then fine-tuning paradigm

Finetuning DIFFERENT pre-trained 
models yields SIMILAR performance on 

both accuracy and robustness

directly augmenting down-stream 
object detection task



Ø Improving Object Detection [Chen et al. CVPR’21]

Robust Learning Improves Generalization

• Boost COCO accuracy up to 1.1 mAP

• Larger improvement on bigger model

• Adapt to single-class detection



Ø Improving Object Detection [Chen et al. CVPR’21]

Robust Learning Improves Generalization

• COCO-C: 15 corruptions and 5 severity

• Significantly improve robustness

• Larger gain under stronger corruption strength



Ø Improving Object Detection [Chen et al. CVPR’21]

Robust Learning Improves Generalization

• Train on COCO, test on VOC

• Outperform vanilla & AutoAugment under every 
model scale and every evaluation metric



Ø Shape-Texture Debiased Training [Li et al. ICLR’21]

Robust Learning Improves Generalization

ImageNet-trained CNNs are biased towards texture [Geirhos et al. 2019]



Ø Shape-Texture Debiased Training [Li et al. ICLR’21]

Robust Learning Improves Generalization

Provide 
Shape

Provide 
Texture

(Ours)



Ø Shape-Texture Debiased Training [Li et al. ICLR’21]

Robust Learning Improves Generalization



Qualitative Evidence
[Tsipras et al. 2019]

ImageNet-A Acc. ↑
EfficientNet-B7               37.7%
+AdvProp (ours)      44.7% (+7.0%)

ImageNet-C mCE ↓
EfficientNet-B7               59.4%
+AdvProp (ours)      52.9% (-6.5%)

ImageNet Acc. ↑
EfficientNet-B7                  84.5%
+AdvProp (ours)      85.2% (+0.7%)

Stylized-ImageNet Acc. ↑
EfficientNet-B7                   21.8%
+AdvProp (ours)          26.6% (+4.8%)

Quantitative Evidence
[Xie et al. 2020]
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Takeaways
Ø Adversarially learned features are VALUABLE

Robust Learning Improves Generalization



Takeaways
Ø Adversarially learned features are VALUABLE

Ø Adversarial examples can serve as a GENERAL data augmentation method

Natural Language 
Processing

Image 
Recognition

Reinforcement 
Learning

Flipping

Adversarial 
Examples

Robust Learning Improves Generalization



Takeaways
Ø Adversarially learned features are VALUABLE

Ø Adversarial examples can serve as a GENERAL data augmentation method

Ø DISENTANGLED LEARNING is important when inputs come from different distributions

Robust Learning Improves Generalization



Takeaways
Ø Adversarially learned features are VALUABLE

Ø Adversarial examples can serve as a GENERAL data augmentation method

Ø DISENTANGLED LEARNING is important when inputs come from different distributions

AdvProp
(CVPR’20)

Classification Segmentation Detection
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Shape-Texture
(ICLR’21)

Shape cue: cat
Texture cue: elephant

Det-AdvProp
(CVPR’21)

Un-/Semi-supervised Learning

Few-shot 

Learning

Multimodal 
Learning

Synthetic 
Data

Uncurated
Internet Data

Robust Learning Improves Generalization
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